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A Semiclassical Theory of Inelastic Scattering of a Particle
@ in the Near-Adiabatic Limit
W
Lit-Deh Chang and Walter Kohn
.
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X
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. ABSTRACT: A semiclassical theory for inelastic scattering of a particle by a
" two-state system in the near-adiabatic limit is developed. The exponentially small
{ ’ -
,. transition amplitude is calculated. The theory is an extension of Pokrovskii and
1 . .
Khalatnikov’s theory for above-barrier reflection. The analysis involves studies
:;‘ of the WKB solutions in the complex coordinate plane along certain contours.
’Y’
',; The region of validity of the theory is established. Our result has the same form
»_Q
X as the Landau-Zener-Stickelberg formula; however, our theory is applicable to
(L
":N more general systems. Numerical comparisons with exact solutions are presented;
o
0 the differences between our resuits and exact solutions become negligible as the
v I
. adiabatic limit is approached.
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‘: L INTRODUCTION

R

o

o The inelastic scattering problem of a particle by dynamical systems with internal de-
:u d grees of freedom is an important problem in many fields of physics and chemistry. In
3? various contexts the internal degrees of freedom could represent phonons in a solid, vi-
b brational states of a molecule, atomic energy levels, ionization states, etc.. Consider the
:; scattering of a particle by a harmonic oscillator for example. In the adiabatic limit in
: : which a heavy particle is incident with low velocity, the oscillator wave function follows
t’ the interaction potential due to the particle adiabatically and returns to its initial state as
;l' the particle leaves the interaction region; even if inelastic scattering is energetically possi-
3:\'.: ble, the inelastic transition amplitude approaches zero in the adiabatic limit. For a small
:f: but finite incident velocity the transition amplitude is exponentially small as a function of
:: a parameter which characterizes the dcviatiqn from the adiabatic limit. Near the adiabatic
limit 2 WKB expansion in the appropriate small para.meter is natural, such an expansion
2 yields a vanishing transition amplitude in any finite order. Many approaches ! have been
: . developed in the past to deal with the problem with various degrees of success. However,
f questions of the validity and generality of those approaches have remained unresolved. In
& this work we have developed a rigorous treatment of this problem to obtain exponentially
1 small transition amplitudes for general interaction potentials between a particle and a
.'3 system with two internal states.

N Stiickelberg 2 was the first to applied a Zwaan type of analysis of the WKB solutions
E to the problem of the inelastic transition. His theory was based on the so-called Stokes
3 constant method. Since the Stokes constant method has not been justified for general
5 problems, the validity of his theory remains unclear 3. Our theory is an extension of
Pokrovskii and Khalatnikov’s theory ¢ for above-barrier reflection. We obtain the same
= resuit as the Landau-Zener-Stickelberg formula in the near-adiabatic limit. Our theory
% 2
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., is however more general and we establish its region of validity. In Sec. II we review the
& ' work of Pokrovakii and Khalatnikov. In Sec. III we review the two-state model and the
) adiabatic basis. Our procedure for obtaining the transition amplitude is presented in Sec.
» IV. Numerical results are described in Sec. V. Mathematical proofs of the propositions
W used in Sec. IV are given in the appendix.
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IL. ABOVE-BARRIER REFLECTION

!
'.;tji‘
";, Consider a one-dimensional potential scattering problem with a localized repulsion
. potential V(z). If E > V(z) everywhere on the real axis, the Schrédinger equation
;;'v :
33 20@E) |,
Wi —— -V = 1
33 Gl + o E-V(@)¥(z) =0 (1)
ez 2M @)
e A
zf:; has a physical solution corresponding to incidence from the left, which satisfies the following
p‘i‘ 4 :
':t:":: asymptotic conditions:
1 . .

A W(z) = ~= {7 ;. Re™®I® L 7 o —o , 3
B )~ 7 } (3)
K 2, . -
::s‘:i. —_— Lequ ' T — +00 ) (4)
.-‘.ri . .
R

iFJ' . - $ - V .
;‘4’;_ | 7 c lun _\/E. () , (5)
R R is the reflection coefficient and T is the transmission coefficient. In the semiclassical
{. . limit a — oo, T tends to one and R is exponentially small in a. On the real axis the WKB
555
_‘:5 solutions of Eq.(1) are
RIS L +ia f q(z)dz

¥*(z,3) = e 7 , (6)
it L
l‘:: *‘
g e
s 9o(z)=vE-V(z) , (7)
g ;._?_ and Z is an arbitrary but fixed lower bound which may be real or complex. These solutions
1‘! ‘
:', have an error of order a~!. In the following we shall use the symbol = to denote an
A%,
i approximate equality which becomes exact in the limit @« — co. According to the boundary
.(_E condition (3) , the physical solution can be expressed in terms of the WKB solution:

\ .

39!
igﬁ. ¥(z) ~ ATV (2,2) ,z— oo, (8)
'::l
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where A™ is a constant. As we trace the solution along the real axis beginning at +oo,

;3:: : Eq.(8) remains valid uniformly all the way to —co. But ¥+ does not include the exponen-
;3: tially small reflected wave. In fact R cannot be obtained even if we expand the solution
" ! to higher orders in powers of a~! . Pokrovskii and Khalatnikov ¢ developed a method for
;il obtaining the exponentially small R to leading order. We now review their work briefly.

Sf Throughout this work we shall use z to denote a complex coordinate and use z to
K denote a real coordinate. We assume that all potentials can be analytically continued into
;: those regions of the z plane which are relevant to our discussions. In order to obtain R we
el must construct a solution of the Schrédinger equation along a path in the z plane where,
'.'A even as a — oo, the ratio of reflected to incident wave functions ( see Eq.(3) ) remains
: i finite and does not tend exponentially to zero. This path passes through a point z., defined

by ¢(z) =0 5 where the WKB solution breaks down. However, similar to the familar case

}_4 of a classical turning point on the real axis, near z. an exact solution of the Schrodinger
E equation can be obtained and joined to WKB solutions. If ‘there are more than one z, the
Ca one closest to the real axis must be chosen.

" Consider now the transition point z.. The appropriate lines passing through z. are
:?": given by the condition, .

o Im / q()dd =0 . (9)
b :

%E" They are the so-called anti-Stokes lines, on which the functions ¥*(z, z.) and ¥~ (2, z)
:)t: have the same magnitude, regardless of the value of a ( see Eq.(6) ). There are altogether
; : three anti-Stokes lines, two of which are shown schematically in Fig. 1. L, and Ly are
: : useful to us because they form a contour connecting +oco0 and —oo. Asymptotically they
~' run parallel to the x-axis at a distance which we denote by y;. The procedure of Ref.(4)
! - for obtaining R is as follows.

R

:.:.:' Starting with the right-going wave (4) at +oco on L, we find the wave function in the
5 :

o
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g
. asymptotic region,
g
B ¥(z) = L ciais (10)
A
R where z = z + iy;. Except in a small neighborhood of radius O(a~2%/3) near z, ¥(z) can
Ei?:z' be represented on L; by
R
o
K V(z) » AT (2, 2) , (11)
I‘ )
K + _ p —iangt
%E:::‘ AT =Te , (12)
and
:‘g‘e.&'l +00
e v =2 [ @) - a7 - gz} (13
?‘t ": Ze
:::.:a:l
The solution is then matched to the exact solutions of the Schrédinger equation in the
;’r \
*3:5 vicinity of z., which are the familiar Airy functions. The Airy solutions are valid in a
P -
4 50 neighborhood 1. of radius d. around z. ( see Fig. 1 ), where d. is the range in which
" ' the term (E — V(z)) can be approximated by the linear term of its Taylor expansion at
.Qf' \)
E \ Zc; dc is evidently independent of a. The matching region lies between |z — z.| = d. and
. |2 = z¢| ~ a~2/3. @ must be large enough so that the matching region exists. Similarly,
- except for a small neighborhood of z., the physical solution on Ly can be represented by
o
‘é’ a linear combination of the two WKB solutions, Eq.(6),
"y B
» "
" ¥(z) = {BYY¥"(2,2) + B~V (2, %)} , (14)
Rt
L
«:" § where Bt and B~ are determined by a similar matching procedure to the Airy solution
‘ +
? in the vicinity of z.. B+ and B~ have the same magnitude. On Lj, as z — —oo0, ¥(z),
Eq.(14) takes the form
o
B "
{.:- : ¥(z)  — {B"" —ian” giadz 4 g—ian” ~iadz) . (15)
V3
)
o3 6
W
g

)
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R
When the appropriate values of A*, B+ and B~ are used and comparison with Egs. (3)

e
) and (4) is made one finds
Taclrter) (10
g R~ —iedian™ (17)
B)
:‘ )
2} Notice that |T'| ~ 1, while R is exponentially small.
;:‘ . Let us note in passing that R cannot be obtained by using a contour consisted of LI
; _‘: and L3, corresponding to L; and Lo, but passing through z?, the complex conjugate of
5
b zc. The reason is that whereas on L; and L9, the asymptotic magnitudes of the incident,
ﬂ:f transmitted and reflected waves are all equal, on L] and L3, the magnitude of the reflected
N
éﬁ: wave is exponentially smailer than those of the incident and transmitted waves by a factor

e" .
§.“‘ of e~4@@1, Such an exponentially small term is “missed” by our procedure.
¥
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1. ADIABATIC BASIS

We consider the one-dimensional scattering of a particle of mass M by a two-state
system with energy splitting %w. We denote the internal states by |0), the lower energy H
state, and |1), the higher energy one. They form the so-called diabatic basis for a two

dimensional vector space. The Hamiltonian of the total system can be written as

H=Hp+ Hy + Hins , (18)
A2 42
Hy= -3+ Vo(z) (19) 1
B =-2s (20)
Hip = V(2)0z + Va(z)o2 , (21)

where Hp is the Hamiltonian of the particle, H, is the Hamiltonian of the two-state system,
H;n; is the interaction Hamiltonian and oy, o, are Pauli matrices. The two-component

Schrodinger equation in this basis is - .
o (Wo(z)): . ({%(z)) - a2

V1(2) ¥1(2)

We assume that Vj(z), V1(z) and Vo(z) all tend to zero as x — oo and that the particle
comes in from the right. For a fixed energy, the velocity of the incoming particle decreases
as the mass is increased. In the limit of large a the particle acts on the two-state system

as a slowly varying external field and the two-state system follows nearly adiabatically; in

the infinite « limit there is no inelastic transition. In the extreme adiabatic limit ( @ = oo

) the Hamiltonian is trivially diagonalized at each z by the transformation!+2
( cosd(z) sinﬂ(z))
—sind(z) cosd(z)

"4 R A'c N
P A

U= (23)

where

2 s ASEEA AW X R A KB N

-

a

A
o>
——
N
| —

tan 20(z) = , (24)
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nE = - (25)

(25) does not determine 4(z) uniquely; we make the choice of 4(z) to tend to 0 as x — o©
so that

1/2

cosb(z) = L 1- Vi(z)

—_—g , 26
V2 V() + VE(2) (20

1/2 ]
nwm=-i;1+——lﬁi——) . (27)

v2 JVE(2) + V2(2)

We shall assume that there is a pair of points z. and z; where V12 + V92 vanishes. If ‘

and

there are more than one pair of 2. we choose the one which is closest to the real axis.
v/ Vlz + ng is defined to be positive along the real axis with one cut going from z. to i1cc
and the other from z7 to —too. This choice of branch cuts insures that the mixing angie

8(z) is a continuous function of x on the real axis. For z real, U is unitary. The new basis

( 0, z) ) ( 10) )
=U 28
11, z) 1)

constitute the so-called adiabatic basis. In this basis the Hamiitonian takes *he ‘or

vectors

=UHU™! 2
2 2 : ' .
(i + dg®) + Us(a) pl -
- 2 42 8 3 5- .
o (A o o aai AL AR

where Uy, U; are the adiabatic potentials,

Uy(z) = Vyy(z) - \,V 2)° = Vaiz "

and




5,
w2

AR

The Schrédinger equation becomes

g, (90(3)) - (‘50(2)) , (33)
?1(2) ?1(2)
where
( 00(2)) ( Wo(2) )
=U . (34)
21(2) ¥1(2)
It is easy to see that
Wo(2)|0) + ¥1(2)|1) = Do(2)[0, 2) + ¥1(2)1,2) . (35)
If the off-diagonal terms of H, are neglected, ®o and ®; are uncoupled. The WKB
solutions ( @ — co ) for these uncoupled equations have the usual form,
X (©) 1 +ia j: qo(2)dz
5(2,2'%) = \/;(?)e : , (36)
and
 ia f q,(z)dz
’*(3, 3(1)) = ﬁ ¥ ’ (37)
where
%(s) =VE-Uyz) , (38)

and z(*) is an arbitrary but fixed lower bound. The branch of ¢i(z) is defined so that

%(z) = VIE- Viz” for z > z; and ¢;(z) = z\/IE Vi(z)| for £ < z;, where z; is the

classical turning pomt defined by
E-Uiz;) =0 ,$=0,1 . (39)

If we treat these solutions at the classical turning points z;, we will obtain a reflection
coefficient of magnitude 1 and a vanishing inelastic transition amplitude. This remains
true in all higher order WKB approximations. We need to go into the complex z plane
and follow the solutions along appropriate contours. We need to consider the singular

10




. points : zg, z; and z ( see Fig. 2). Note that at z. the function #(z) diverges and
A hence the off-diagonal terms of H; also diverge, which signals the failure of the adiabatic
solutions. In Fig. 2 we show the anti-Stokes lines defined as follows,

F 4
LiLy:Im [ (@l - ds=0 (o)
L3:Im/q1(z)dz=0 , (41)

“ 2
0 and
2 s
[ Ly: Im/ go(z)dz =0 . (42)
‘,;'
., L3 and L4 are just the anti-Stokes lines for ordinary potential scattering problems with

‘
':.. classical turning points at z; and z3. L) and L9 are the lines on which Qb"(z, ze) (®g (2, 2¢)) 7
l. ’
. have the same magnitude as 7 (3, 2) (#7 (3, %)). The topology of Fig. 2 depends on

§ the potentials and the energy. Since U > U, z1 > Zo. Both zg and z; shift to the right
" as the energy is decreased, whereas z. does not depend on the energy. In most previous
A discussions of Stickelberg’s theory, only the cases where Re(z:) > z(,z; are discussed.
'<' We will see that this restriction is not necessary. The general features of L; and L9 are:
:3:., 1. L; extends to infinity and becomes parallel to the real axis at a distance y; for z — oo;
o and 2. L, intercepts the real axis at a point Z which can easily be shown to be always less
]
;‘ L than z;. Both y; and Z depend on the energy for given potentials.
L
. :
)
‘e
B
o ,
28 t
Y ]
»
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IV INELASTIC TRANSITION AMPLITUDE

Consider the physical solution of the Schrédinger equation (23) along the real axis with
the following asymptotic conditions:

Vo(e) = Z(eowE 4 pF o)z

-0 y T — —00 , (43)
AY . _
y(z) = ﬁe“"’" yE— 0
- o )z - =00 ] (44)

where §; = ¢i(z — co). In the adiabatic limit AT =0 and |A{| is 1. In the near-adiabatic
limit, Ai" cannot be determined from the usual treatment of the WKB solutions to all
orders whereas A} can be determined to leading order, since its magnitude is ~ 1. We
have seen in Sec. III that at the complex transition poin.t. z. the adiabatic solutions break
down. We shall obtain the transition from one state to the other by a careful treatment of
the Schrédinger equation near z.: we need to obtain the exact solutions near z. in order
to connect the WKB solutions on L; and Ly. One might hope to obtain the exponentially
small amplitude following a procedure similar to that described in Sec. II; however, the
geometry of L) and Ly are very different for the two cases. In the case of above-barrier
reflection L9 extends to —co where WKB solutions become the exact solutions and yield
the exponentially small reflection amplitude. In the present case Ly goes down to the real
axis where the potentials do not vanish and hence the exact solutions are not known. A

different strategy is needed in making use of the solutions on L and L.

It is helpful to think of the physical solution as a linear combination of two-component
Jost functions (JF) 8. A JF is a ( non-physical ) solution of the Schrddinger equation
which asymptotically has only one incoming or one outgoing wave in one channel. The
exact physical ‘olution corresponding to the asymptotic conditions (42} and (43) can be
12
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)
. written as,
4
5
\ 0- 0+ 1+
%8 Wo(z) = ¥\ (z) + AT (2) + 479 (2) (45)
vy
by 0- 0+ 1
¥1(z) = ¥ (2) + 430" (z) + 470V (z) (46)
':' g where ‘I’Sj %) (z) is the component in channel s of the JF with unit incoming (~) or outgoing
)
.:‘?, (+) amplitude in channel j. Our objective is to determine the coefficient A7 which, by
)
y Eq.(44), is the transition amplitude. The procedure is as follows.
K
RO
,Z;‘i 1. We first obtain AJ, whose magnitude is ~ 1, by ordinary WKB techniques, applied
I,
o::: entirely within channel 0. ( Ordinary reflection by a barrier. )
:f 2. Next we note that, as z — —co each of the JF components in Eqs.(45) and (46) grows
.f:. exponentially like 97, Eq.(37), which is the most rapidly growing exponential. We shall
3z '
e choose AT so that the total coeficient of @ vanishes.
:’.;; 3. To accomplish step 2, for Eq.(46), we need to know the coefficient of Q‘l", for z — —o0,
;‘j of each of the JF components \I’go-) (z),_ Wg°+) () and \I’(11+) (z). The first two coefficients
. are exponentially small and need to be carefully calculated on appropriate contours ( see
\J
e below ). The last coefficient is of order 1 and can be easily obtained by ordinary WKB
¥ n.'r.
',\ techniques, applied entirely to channel 1.
i?h
i 4. Since this procedure determines A'l" uniquely, it is not surprising that, in fact, it also
‘:: makes the leading exponentially growing term of Eq.(45) equal to zero.
R
Y We shall need a number of propositions which are proved in the appendix and which
have been verified in our numerical calculations.
o
b Proposition 1. Consider the Schrodinger equation (33) on the real axis. Under con-
1,
ditions detailed in the appendix, the physical solution, which vanishes at —co and has an l
' incoming wave in channel 0, has the following components, |
o * |
S - |
Po(z) ~ (%) ’ Ai(—agfo(z)) ,everywhere , (47)
o 13
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$1(2)

0(2) 0 2 < 2o,
a1/601(z) ~0 ,Z > zg, (48)
where N
3 (@@= [qdz (49)

z

and ¢; is given by Eq.(38). The branch of & in Eq.(49) is defined so that §;(z) =
[=U'(z;)]}/3(2 - z;) in the vicinity of z;. Proposition 1 establishes the validity of the
ordinary WKB solution.

Proposition 2 gives the exact solutions in the vicinity of z.

Propaosition 2. Consider a circle (1. of radius d. around 2,. We denote the intersection
of ¢ with L) and L, by 7} and 3 respectively (see Fig.2). Assume that V|V] + V3V does
not vanish at z.. Then for sufficiently small d., the general solutions of the Schrddinger
equation (23) in ( are given by

o (s) = €294 (ay 4i(~a®/3C?34) + by Bi(—a®3C?g))
+ e~iael (a_Ai(—a2/302/3§) + b_B;(-a2/3c2/3g)) : (50)
to the leading order in ¢, where
¢=3—2z2 , (51)

¢%e=VE-Vo(z) , (52)
- (V2 +V3Y ,

= —— 53
2qc Izc ’ ( )

and a+ and b4 are arbitrary constants.
Proposition 3 and 4 give the WKB solutions on L; and Ly which are needed for finding

\Il(()°+) (2).

Proposition 3. Consider the anti-Stokes line L;. Let z; denote a point on L; at a
fixed distance from z. and let LT denote L|, excluding the segment from z to z;. Under
14
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conditions detailed in the appendix, there is a solution of the following form,

Do(2) = ¥ (2,2) (54)
0.1(3)
() ~° (55)

for z on Ll—'

Proposition 4. Consider the anti-Stokes line Ly. Let zp denote a point on L, at a
fixed distance from z. and let Ly denote Ly, excluding the segment from z. to z5. Under
conditions detailed in the appendix, there is a solution of the following form,

Do(2) = ¥F (2,20) (56)
1(2) =~ 97 (2, 2) , (57)

for z on L;.

On Ly, 7 (2,2) and &7 (3, z.) have the same magnitude. Therefore their coefficients
can be determined accurately. To the left of the point 2, #}(z, 2z.) becomes exponentially
larger than 03’ (2, 2), since the real part of the exponentio'f the former is larger than that
of the latter for z < 2. ‘ '

We now proceed to find the leading exponentially growing parts ( for z — —o0 ) of

the JF components. Consider first the JF component ‘I'(()0+) (2) in Eq.(44). As z — +oo,
‘I’g°+) (2) on L; is an outgoing wave in channel 0,

w80+) (2) = \/Lq?e""‘i“ , T — +00 . (58)
where z = z + 1y;. According to proposition 3, the continuation of this function on L, is
given by

\I’(()°+) (2) =~ A(()?;t)‘ba' (2, 2¢)cos0(2) . (59)

where Qg’(z, z.) is the WKB approximation, Eq.(37), of the component of the exact solu-
tion along the adiabatic basis vector |0, z);

((,);:) = e-iaﬂc , (60)

15
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nc=/(90-¢o)d=-402c ; (61)

and cosd(z) is given by Eq.(27). The approximation is valid on L, from +co up to a point
a1, where [a) — z| = O(a~%/3),

We now match this WKB solution (59) to the appropriate linear combination of Airy
functions, Eq.(50), at a point m; at which both the WKB solutions and the Airy solutions
become exact in the limit « — co. By taking, for example |m; — z.| ~ a~1/3, we see that
|1 — zc|/|31 — 2| ~ a!/3, validating the WKB solutions, and |m; — z|/|Z] - z| ~ a~1/3,
validating the Airy solutions. At m; we can use the asymptotic form of the Airy functions,
since the argument, |a?/3C%/3(m; - z)|, is O(a!/3):

, 1 1 ., 2
Ai(-w) ~ ﬁman(swa/z + %) ) (62)
2x 2x
1 . ‘ -3 < arg(w) < )
. 1 -
Bi(-w) ~ 7_;w1/4 cu(;w?/z + f:") . (63)

Accordingly, inside (1., the JF component is given by

Vall3ciir — (0+) giaae

Ve
{4i(-a?/3c¥3¢) - 'Bt(-a2/302/3c)} : (64)

\I'(()°+) (5) = %

where C is given by Eq.(53) and
4}

. . 65
'—_—(Vf " sz);l (65)

In the same way we match the Airy-type solution (64) inside {2, to the appropriate WKB

D=

solution on L9, where the asymptotic forms of Airy functions can be found using the
following identities:
Ai(e= 2 3y) = e-"*/3{§A.‘(w) + > Biw)}
Bi(e=2%/3y) = e-"*/3{g.x.'(w) + -;-Bi(w)} . (67)
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Ly
_ This yields , on Lo,
ek
et
.;":‘ : V) (2) = AJT 0% (2, 2¢)cosd(z) — AL 87 (2, 2c)simb(z) (68)
bz 0+ 0
"',te ; (1 xe) (';0:) ’ (69)
oy where ¢ = £1, and for any specific potentials is given by
g
o,
¥ :'_i €= zll.n}c tcoté(z) . (70)
o
o To be definite we choose ¢ = +1 for the [ollowing calculations. From Proposition 4, Eq.(68)
K
_&,,.: is valid on the whole L; down to the real axis. ( See Fig. 2. ) On the real axis, to the
'. (o]
o left of the point 2, the JF component is dominated by 87 (z, z).
. Therefore, on the real axis, we have
) S
Y o0+ (z) = —=e'0* z — 400 (71)
,".)'. 0 ) ]
2 \/q?m-)
- m —P ' (z)sind(z) ,Z< 2 (72)
@'. where .
o3 (0+) (0+) g+ |
' ¥ () =4 (=) (73)
'v.‘ 1]
o+) _ . .
450 A(l,21 = e~ T M0 ’ (74)
10y %
1' \' .
m= [(ae) - @iz - gimi (73
)
GO
and
: &‘ Ze Ze
b n+iv= [ w(a)ds - / n(@és . (78
’& .sj | z
R 0
It is easy to see that « is positive, hence, A(O ) is exponentially small. The O-component
.:: of the JF, W(o )(z), needed in Eq.(44) can be obtained simply by taking the compiex
" conjugate of \I’o 0+) (z):
- - 1 .
w(0-) z) = —<e'90% ,Z — +00, (77)
e .
oo ~ —Q(lo-)(z)sinO(z) ,I< 2 | (78)
.-’:.-.
" where
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3" (z) = a0t (z,2)) (79)

AL = jemeremiantiam (80)

Finally we require, for Eq.(44), ‘I!SH'), the O-component of the JF corresponding to
channel 1 outgoing. In the adiabatic basis this JF is, for our purpose, obtainable every-
where on the real axis by ordinary WKB turning point methods:

le+) (z) — Tl-il.ei"'i“ yZ— 400, (81)
(11:;)0*(:, ) ,z<z (82)
where
Al < emiem (83)
and
(1+)
’(1.,_) (=) ~0 , everywhere . (84)
2 (=) .

The reason is that for this JF a single component, Q(ll"') (z), is dominant everywhere on
the z-axis; this is not the case for the IF's (0+) and (0-), for which O((JO*) (z) is dominant

for z > 2, while 0(10*) (z) is dominant for z < 2. The required component \Fgl+) (z) in the

diabatic basis is given by
\Ilt()u') (z) ~ —Q(IH') (z)asnd(z) , everywhere . (85)

We are now ready to determine the required coefficient A from the condition that the
coefficient of the dominant exponential, for z — —oo, in Eq.(44) vanishes. Substituting

Eqgs.(72), (78) and (85) into Eq.(44) gives,

0- 0- 1

AV + AL, + At Al =0 (86)
For a wave incident in channel 0 with unit amplitude,

AT ~ —ietim (87)

18
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Substituting in Eq.(86) for A7, A(l?;), A(l?;) and A(ll";:), we obtain, on solving for A7,

Al » ~2sin(an)e~*Teia(mtm) (88)
Incidently, we can verify that the coefficient of #7 (z, z1) in Eq.(45), for z < 2, also vanishes
as it should if A7 is given by Eq.(88).

rollowing the standard definition of the S matrix,

Wo(z) — % (e“""i”’ - Sooei“‘7°’) yZ = +00 , (89)
¥y (z) — —7%4“’"’" 1T = +o0 (90)
we find that
Sgo ™ ie2@™M (91)
and
So1 = 2sin(an)e=Tel2(mim) (92)

( If ¢ is chosen to be —1, the right hmd side of Eq.(92) would change sign. )
Eq.(92) has tie same form as the Lmdzﬁ-l&ncr—Sti‘mkei‘berg formula in the near-
adiabatic limit. However whereas the earlier derivation was limited to the case where

Zc is near the real axis ( almost crossing adiabats on the real axis ) and well to the right of

the classical turning points zj and z;, our derivation is not limited by these restrictions.

We shall now im"lica.te the conditions under which our near-adiabatic approximation is
valid. It requires the'existence of admissible matching points m,, on L; and mg, on L,
(see Fig.2). It is easy to see that if my exists so does my. The existence of m; requires
that

|21 — 2| € de . (93)
Here z, is given by the following condition

ld 1
adzq;(z) - qc
19
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which is the analog of of the condition signalling the breakdown of the standard WKB

approximation 7
|=——]=1 (95)

and d. is the distance from z. over which the following expansion is valid

wle) = | E- V5@ + ()2 + Vil

=g +C(z-2)/? (96)
where ¢, and C are defined in Eqs.(52) and (53). Combining (93) and (94) gives
o)1 . | (97)

~ Since a = VM /M it is evident that for any given potentials and given incident energy, the
condition (97) will always be satisfied for sufficiently large M.

The left hand side of Eq.(97) is the dimensionless large parameter which characterizes
the deviation from the adiabatic limit. ( Let us remark that condition (97) is not necessarily

equivalent to the intuitively suggestive cntcnon that the exponent oy, in Eq.(92), be > 1.)

O 20
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V COMPARISON WITH NUMERICAL RESULTS

We present comparisons between our results and exact numerical solutions. We chcose

exponential potentials,

Vo(2z) =uge™® (98)
Vi(z) = uye™* - -nzﬂ ) (99)
Va(2) = uge™* (100)

where the u; are the strengths of V;(z). Varying u;’s we can study both curve crossing and

curve noncrossing cases. We shall set Aw = 1.

1. Curve non-crossing. In this case we choose uy = 1.02, u; = .02, ug = .2. Two
energies £ = 1, 10 are studied for different values of a. The two cases have very different
topology of z, g, z1 and anti-Stokes lines as shown in Figs. 2(a) and 2(b). Although
the diabatic potentials Vj(z) + f"l(z) cross at z = —3.2,' this point is far to the left of
the classical turning points. In the teglon whée the transition takes place the adiabatic
potentials are almost parallel to each other. In Fig. 3 the absolute values of Q(()0+)(z)
and 0(10+) (z) for E = 10 are plotted for different values of a. For large a, channel 1 is
seen to dominate for z < 2. Numerical results for the S matrix are listed in Table [. The
differences between semiclassical and exact solutions diminish in the limit of large a for

both energies.

2. Curve crossing. In this case we choose ug = 1.2, u; = .5, ug = .2. The diabatic
potentials croess at z = 0. Two energies, E = 0.7,1.5, are studied. For £ = 1.5, the
topology of z,zg, z] and anti-Stokes lines is similar to Fig. 2(a) and for £ = 0.7, it is
similar to Fig. (2b). Results of the S matrix are also included in Table I. The differences
between semiclassical and exact solutions also diminish in the limit of large a for both
energies.
21
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VI CONCLUSION

We have presented a rigorous treatment of the semiclassical theory for obtaining ex-
ponentially small inelastic transition amplitudes. The region of validity of our theory is
established. Our result,Eq.(92), has the same form as the Landau-Zener-Stickelberg for-
mula in the near-adiabatic limit. However, our theory is more general and is appiicable to

a wide range of systerns.
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APPENDIX
%
:;[i- In the following propositions we make the same assumptions about the potentials as
‘b‘.‘ in the text. The proofs of propositions 1, 3 and 4 are analogous to Jeffreys’ proof 8 for the
j E- ordinary potential scattering problem. For convenience we shall use NV to denote a bounded
;:.\ constant independent of a. The value and the dimensionality of N may be different at

different places and are irrelevent to our discussions.

:- L. Proposition 1. Consider the Schrédinger equation (33) on the real axis. We assume
e
B0 < that for the given energy E each adiabatic potential U;, 1 = 0,1, has only one classical
g turning point, z;, and that U{ (z5) < 0, which will normally be the case. If the following
\ __A‘:
:.'_:'_'E:j functions are bounded,
= i o)\ |a) |
' 90 ! .
Fo==/ foo(=)| + |for (=) 2 iz’ 101 |
- (=) (l o0(=)| + | 01( ) a@)! (@) (101)
\._’_\-: -0 7
v, z .
P )\ (=)
1O Fi(z) = / )| + z') ¢ 31 dz’ , 102!
\4,\‘ 1( ) ('fll( )I IflO( ) 50(31) fl(z') ( ) |
-0 i
N and if the following quantities can be bounded by a!/8N, 1
'_:T:Z:: !
o ‘ d ¢ (Z)h() "
FRr= [ + ]| 5 =2 dz’,
o '\ V&(@)&1(Z) (q0(z) £ q1 (=)
3 =0 2?’
2 (5,4) = (0,1), (1,0}, (103)
s , !
Yool where "';: =z;+ Na—?/3, §i is given by Eq.(49), fi;» and h are given by Eqgs.(109)-(112),
oy then the physical solution, which vanishes at — oo and has an incoming wave in channel 0,
\.1\;
-5 has the following form,
"l
i d&\"F ., A
Po(z) = T Ai(—a3&y(z)) ,everywhere . (104)
o ®) (=)
::'-‘: = 0 ' L S I")a
e Po(z)
Sf.;- a1/6§1(z) ~0 , T > Iy, (105)
23




Proof. Defining a new set of variables

1
@) = (F) 8@ =01 (106)
the Schrédinger equation (33) can be written as
2
#xo + agyxo = foo(€0)xo + for(&0)x1 + h(fo);:—o-n , (107)
2
d%pu +a2é1x1 = fu€)x1 + fo(é)xo - h(fl)'a%l'xo ; (108)
where
20
h(&) = W ; (109)
1 & 3 (0' )? i=
fu(et 2 (€)3 4 (a)4 (q)z ’ 0! 1 ? (110)
fo1(&) = W (0"&' -04") , (111)
fio(é) = W (-6 +a") o (112)

In Eqs.(107) and (108) x; are functions of &;. The conébondmce between &; and ¢ is
one-to-one. If x; is negligible, Eq.(107) involves only channel 0. The solution of X0 is
given by Eq.(104). To show that x; is indeed negligible we transform Eq.(108) into an
integral equation 8. We need to construct the Green’s function. The general solutions of
the homogeneous equation,

d2
ij(lo) + a2€1x(10) =0 , (113)

are Airy functions:
O(61) = aydi(~a?/3g;) + by Bi(—a?3e) (114)

where a; and 5 are arbitrary constants. The required Green’s function which satisfies the

differential equation,

d? - ~ ~
d—eljcl(&,&) +a26Gi(6,6) =86~ &) (115)
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has the following form:

S ~ 23 ~ -

2% G161, &) = 4i(-a*31) Py (&) <8,

N . : ~ ~ ~
B = {+i4i(-a*3g) + Bi(-Pa)} (&) & >&,  (u8)
Py

3 E where Gy — 0 as §; — —oo and, as §; — +o00, G is an outgoing wave in channel 1 for
2 fixed &. Solving for Gy, we obtain,
;"" G1(61,&1) =~ i P (ii(-a?3E) + Bi(-a?R)} &<,
i = —JAi(-a? PR idi(-a¥3g) + Bi(-a¥Pa)} L& > & (17
e
;;“ The integral equation for the required solutions is,
" oo
's -~ -~ d
oty x1(§1) = | d&1G1(&1,61) { fuxa + froxo — hfxo ; (118)
j& where the homogeneous term is chosen to be 0. ( We have omitted some arguments of
I a
::-‘: the funcitons to shorten the notation. -) The first interation of Eq.(118) is obtained by

N h . .

- substituting x; with 0 and xg with Ai(—a2/3€0):
!' :
i oo
" ~ ~ d . 2/3

' x1(&1) = / d€1G1(1, &1){fi0 — h—="}4i(-a“"&) . (119)
",g‘ d£1

-0

g The right hand side of Eq.(119) can be written as a sum of three terms,
it .
R xiV (&) = 'a2/3A'(-'12/3€1) / d&4i(-a?*8){ 10 - h—}A'(—a2/3€o) ,(120)
R

=

3 xiP (&) = --a2_/3 / d& KT (61, 6){f10 - h—-}A%(-a2/3€o) , (121)
~ -~ d .
o e = = / 46K (61, 8){f10 - b=z }ai(=a?3g) (122
X 'r.")’,-) +00 3
A ‘r,‘\
‘o where
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K7 (&, &) = Bi(~a?36) 4i(-a?3E) (123)
K7 (&, &) = Ai(-a?38)Bi(-a?*3E) . (124)

Since Ai(—a2/3£;) is bounded everywhere and Ai(—a?/3¢)) is exponentially smaller than
Ai(—~a?/3&;) for z < zj, we have

(1)
X1 (z)
A a2l (a)) ~0 ,Z2 < 2 , (1285)
al/ex(ll)(z) ~0 ' T > 2 . (126)

Both x{? and x{* satisfy equations similar to (125) and (126). We shall give the bound
for the second term of x(lz):

& . )
~ d ~
2(12)(61)5-';;73' / d€1K:hd—g-4i(—a2/ 3%) (127)
-0o

the bound for other terms in x(lz) and x(lz) can be obta.iﬁed similarly. Consider first the
region z < zg. In order to utilize the .uymptotic form of Ai(-a2/3go) we disscuss two

cases , z < z; and z; < 7 < z(, separately.

For z < zj, using the asymptotic forms of Airy functions, we have,

—— £ b =/
2~ e [ en( k) , (128)
-00
where
ﬁ(z)=__.’_".(.f)_ ) (129)

Vé1(=) (=)

The integral in Eq.(134) can be written as

E 3 29
4 —o(f laild="+ [ 1goldz")
=

2z’

[ w@k) 4
/ “ (@) + @) i

~Q0
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N Performing an integration by part in this form, we obtain,

9
20h(z) - [ {qold2’

%) < I
b V1= 1a1/64/¢ () (90(2) + 1 @°
1 0 n
d ah . —o lald="+[ lgoldz"~ [ lqrldz")
¥ / (=) = - . | .(130)
x4 07/5\/81(:: dz' @ + q1
W
' Since we have assumed that there is only one classical turning point for each adiabaitc po-
" 4 29 f
',:.‘ ‘ tential, the function [ |q1|dz” + [ |gp|dz” is monotonically increasing as z moves from zj to ;
:" 4 2 o
‘: —00. Hence the exponential term in the integral of Eq.(130) is bounded by ezp(—a [ |go|dz”).
A z
. From this and the assumption about F2°+, it is not difficult to see that
gl
i,o IX 2)I < —As(-azlafo(z)) T <z . (131)
:.l'a
. For zj < z < z( the asymptotic forms of Airy functions are not valid. However, both
N
% As and Bi are bounded, we can estimate the magnitude of the integral easily. In this
: region the integrand can be bounded as follows:
o 1 N
b — < —
Ak (132)
" and
. 12 4i(=a?38))| < 23N . (133)
@ déy
::: Since the integration region is only of O(a‘2/ 3) , the integral is only O(a~!). Therefore
¢
! we conclude that "
Gt X (= < 134
2 e ~0 , < zg . (134)
4
¥ 7

For z > zg, X canbea.na.lizedforregionszo<z<zi‘,zf§z§zi"mdz>zf‘

by a similar treatment. We obtain a!/ 53’(’(12) (z) ~0.

II. Proposition 2. Consider a circle 1. of radius d. around z.. Assume that Vivi+VaVsy

-
D

oA |

does not vanish at z. then for sufficiently small d. and sufficiently large a, the general

! 27
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solutions of the Schrédinger equation (23) in (1 is

' NOE Tl (“Ae(az/"‘cz/%) + b4 Bi(a?/3C2/3 ;))

+ =24 (o 4i(ad/3CH3) + b_Bi(a?/3CH)), (135)

to the leading order in ¢, where ¢, ¢c and C are given by Eqs.(51), (52) and (53); and a+
and b4 are arbitrary constants.

Proof. Eliminating ¥;(z) from the Schrédinger equation we obtain the fourth order
differential equation for ¥q(z),

2
D9(e) = { 2 + (o) g + Ale) g + G + o) )

=0 , (136)
where
f3= -2V2 ) | | - (137)
2 V” VI 9 .
fo=2E-Vy) + (-% + z(-‘%) Yy o, (138)
VI
f==-28V+ V] + -V-%(E -V-w) (139)
fo = &*((E - )2V - V)
v/ 2 "
+all-(V) +V]) + A L)V 14143 2 (E-Vp-V1)+ 2—2(V0 +V)] . (140)
2
Pulling out a fast oscillating part of ¥g, U
Wo(z) = e%x(¢) (141)

the solutions of x(¢) include two slowly varying solutions ( for sufficiently small |¢{) and

o two fast oscillating solutions; we will find the former. The equation for x reads

3 2
2 O] P CELIN
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- where
5
2 .
“ 93(3) = —4iage (143)
| g2(3) ~ Zaz(E -V - 3q§) (144)
! .i- 91(3) m 4a’ige(E - Vo - &)

. 124 '
b +22% V) -V - (V-1 + 3q3)—2] (145)
2 90(z) = a*{(g? — 262(E - Vo) + (E - v0)21 -V + V)
oA 4
] +2adig[V{ - Vg +(E-Vp -V - q?);,z] (146)
:z, 2

N Linearizing the potentials at z. and changing variable from z to ¢ we obtain

T\
2 at d
3 {5+ assF +(a?S3 + ¢3T2s') +atSi 5 + (0350 + a'Tor) | x(o)
W =0 , (147)
f: where
L
9
N Sy = -4 (149)
o brag
3 $1 = ~2a1 - 29 + 252 +4q’% , (150) L
; T, = 4igeag (151)
o .2gcs
R So = -'Tc(blaz -aid) (152)
‘ B
R To = 2(agby + ayby) (153)
& with
J_
¥ w=Viz) (154
- h2=Via(z) . (188)
3
:E', . Making a scale transformatin
B2
a 7= 02/3§ , (156)
3 29
R
3?::

...... - w " o
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and assuming that |%—:,-§| are of the same order as |x|, Eq.(153) can be reduced to the
leading order in a:

d? 1 g dx
E} +Clnx + STl dn§ + Tld" ~Sox|=0 . (157)

For n > O(a‘l/ 3) the last term is negligible, the solutions are the Airy runctions. For

n < O(a~!/3) the last term is not smailer than the second term, however, all terms are
small; the correction to the Airy functions vanishes in the large a limit. Hence the slowly
varying solutions are i
x(s) = a+ 4i(a®3C%%) + b, Bi(a®PCc¥%) | (158)

where ay. and b are arbitrary constants. This shows that the scaling, Eq.(156), is indeed |
a correct one. Eqgs.(141) and (158) give one set of solutions. Pulling out another fast
oscillating factor e~*%«< (cf. Eq.(141)) we can obtain the other set of solutions in Eq.(135).
OL Proposition 3. Consider the anti-Stokes line L;. Let z; denote a point at a i
fixed distance from z and let L] denote L), excluding the segment from z to z,. We |
assume the following conditions to be true: 1. L; does not pass through singularities of

4
the potentials. 2. the mappings &;(z) = [ ¢i(z)ds,s = 0,1, are one to one ?; 3. Im(¢;)

Ze
increases monotonically as 3 moves to the right on L; 0. If the following functions can be

bounded by N,
Fola) = [ (foo(e)l + 1 fon(a)) l(e)asl (159)
H
Fi(a) = [ (@) +lho@) a@ds (160)
= [|2 (Glrem) e =0 e

where f;; and h are given by Eqs.(167)-(170), then, for z on LT, there is a solution of the

following form,

Po(z) = 00+(z, ze) , (162)
30




AN

®;(2)
®o(z)

where &7 (2, z) is defined in Eq.(386).

~0 .

Proof. Defining a new set of variables

xi(&i(2)) = (%) : ®i(z) ,i=01 ,

the Schridinger equation (33) can be written as

a3 » d
FTA R + a’x0 = foo(€0)x0 + for(é0)x1 + h(fo)an

2 d
;:?Xl +a?x1 = fulé)xi + fro(&1)xo - h(&1) Zg o
where
20
M= e

ey 1 & 3 @2
1 1 o ! n
U A

1 o ! n
e el

fo1(&) =
fio(é) =

T WY

(163)

(165)

(168)

(167)
(168)
(169)

(170)

The correspondence between variables £ and £, is one-to-one. Similar to the proof of

proposition 1, we transform (165) and (166) into coupled integral equations :

§o
xo(éo) = x§(60) + [ dBokKa(ta, o)

{foo(Eo)xo(Eo) + for(€o)x1 (&1) + h(Eo)i—n(El)} . ()

d&p
3

x1(é1) = x(lo)(&) +/dE1Ka(£1,§1)><

{fll(gl)XI(gl) + f10(&1)x0(&) - h(gx)é

31

m(a)}, (172)

R \ . . Pl b o T g 0 - N o
A 00y Py Oy B TN P A e " o O . h4 ; oy o 2 $
A A SR VYN o e AN, OGO v".e%t%«‘ﬁfwvj A L




- —— T
W e -

where x(() ) and x(o) are solutions of the homogeneous equations:

X3 (&) = age’® + pyeiobe (173)
X(IO) (&1) = 1 ® 4 hye~tols | (174)
and K, is the kernel,
Kol &) = —— ( (=) e""‘f~‘f'>) : (175)
Choosing the lower bounds of the integrals to be £°, where z(£°) = co+1yy, and choosing
x(()o) = ¢'o , (176)
=0 (177)
the integral equations become,
. % d
xo(&) = % + / déo Ky {fooxa + foix1 + h—-X1} , (178)
/) . _ dp
Eo .
l -
-~ d
x1(é1) = / d§1 Ko {qul + flo0x0 — h—xo} . (179)
d§;
The first iteration of Eqs.(178) and (179) gives
& s
xoléo) = €8 + [ dKafone® (180)
£5°
\51 d -
x1(&1) = /d&Ka (flo - h—-) ebo | (181)
o d§;

Eq.(180) includes only one channel, which is similar to the ordinary potential scattering

problem; the integral is negligible. We will only show the the bound for the second term
of (181):

13
~ d ..~
W) =- [dEiKanzeod (182)
/ d§;
£
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Performing an integration by part ( which is similar to the step from Eq.(128) to Eq.(130) |
), we obtain

x(ll) = %ei"‘& (By + By + B3 + By) , (183)
where

B, = M)

’ 184
() — 13 (s
h(z)qo(2)
o By = —21%008) 185
e P G+ ad e
:‘; 3
108 / iy (& ME0E) ) @ )-6) 186
] = ]
B= ] 4 @ - )" (180
~‘ . )
i - 8 _m(#)(#) , zial(e () +eo()=(E(x)+ ()]
b e / (@ 2@ + 0@ - e
u}‘ o
s &)
ROY .
s From the definition of L; , [¢!*(€=¢1)| is 1. Therefore B;, B; and Bj are bounded for z on
: Ly . From condition 3 about L; we see that the real pa.rt of the exponent of B4 is always
3 less than 0. Thus By is also bounded. Therefors we have
i XDt
I %@ "0 (158)
e
-{:::.' The proof of proposition 4 is similar to what we have just shown. We only give the
' statement.
.
Py, Proposition 4. Consider the anti-Stokes lines L,. Let 29 denote a point at a fixed
KN
'.:l;n: distance from z. and let L, denote Ly, excluding the segment from z; to z9. We assume
Al the following conditions to be true: 1. Lo does not pass through singularities of the
N z
;E potentials. 2. the mappings &;(z) = [ qi(z)dz,¢ = 0,1, are one to one; 3. Im(¢;) increases

Ze
monotonically as z moves down to 2 on L, !1. If the following functions can be bounded
e by N,

Ao(a) = [ (oola)l + lor(a)D) ()l (189)
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A = [+ @) n@d N

o o [d [ _al@)h) N oico1
%(”‘Zmu<muoiawﬂha' =01 (1s1)

,. where f;;, and h are given by Egs.(167)-(170), then, for z on Ly , there is a solution of the
following form,

. () % 85 (m2) (192)

! $(z) ¥ (z2) (193)

where ®((z, z.) and ®1(z, z) are defined in Eqs.(36) and (37) respectively.
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. FIGURE CAPTIONS
\»
': Fig. 1. The typical topology of the complex transition point z. and anti-Stokes lines
L, and L are shown for above barrier reflection problem. L, extends to +co and becomes \
AN v
:{j parallel to the real axis at a distance y; asymptotically. Lo behaves similarly as it extends ;
3 to —oo. b
Fig. 2. The transition points zg, z], 2, z and anti-Stokes lines L;, Lo, L3, L4 are 3
shown for the curve noncrossing case in Sec. V: 2(a) for E = 10 and 2(b) for £ = 1.
‘ \
. ig. 3. The absolute values of ®; ’'(z) and ®; ’(z) for the case of Fig. 2(a) are
R shown for several values of a: 3(a) for a = 1, 3(b) for @ = 5 and 3(c) for a = 10. |Q60+) (z)] >
3 is represented by the solid line and |#{>*)(z)| by the dash line. The vertical dot-dash line }
” marks the position of 2. Note that for large a, Q(10+) (z) becomes greater than ng+) (z) e
9
" as x moves to the left of 2. 3
-
;
4 TABLE CAPTION :
. ¥
a: [
Table I. The numerical results of exact and semiclassical solutions for the S matrix =
[}
" are shown. The semiclassical results are calculated from Eqgs.(91) and (92). Note that the
& ‘ differences between them decrease as « is increased. I ! '
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TABLE I
Case [. Soo So1
E | a Exact Semiclassical Exact Semiclassical
1 (1 [( .532, .808)[( .488, .873)[( .072,-.243) ( .130,-.323)
5 |( .552,-.834)|( .557,-.831)( .308, .103) -10~2|( .260, .092)-10~2
10 {(—.924, .383)((-.925, .380)|(—.166,—.132)-10~%|( —.157,~-.127) -10~*
105 |( .564,-.825)|( 343,-939) ( .454,-.017)-10"!|( .574,-.019) .10~}
10 |(-.734, .678)|(-—.644, .765)|(-.328, .022)-10"1|(-.345, .022)-10~!
20 {(—.993, .115)((-.985, 171)( .608, .080)-10"2|(-.613, .080)-10~2
Case I Soo So1
E | a _Exact _ Semiclassical _Exact Semiclassical |
0.7 |10 |( .999,-.038)|( .999,-.038)|( .207, .042)-10-!|( .165, .035)-10"!
20 {(-.079,-.997)|(-.079,—-.997){( .258, .114)-103|( .227, .102).10~3
30 [(-.993, .119)[(-.993, .118)(( .143, .104)-10~%|( .126, .093)-107
1.5 (10 [( .979,-.126)]( .739,-.674)[(~-.103,-.120) (—.258,-.305)
20 |(—.874,—.402)|( —.996,—.091)|( .045,-.269) ( .083,-.311)
30 |( .430, .887)|( .604, .797)|(" 144,-.085) ( .147,-.087)
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